
1. Introduction
Longwave radiation is a key component of the atmospheric energy budget that drives climate change. At the 
top of the atmosphere (TOA), the outgoing longwave radiation (OLR), as well as its spectrally resolved radi-
ance, is monitored by satellites with global coverage and long-term records (e.g., Liebmann & Smith, 1996; 
Stephens et al., 2012). This allows us to study changes in OLR and to test climate models (e.g., Brindley & Bant-
ges, 2016; Harries et al., 2001; Huang & Ramaswamy, 2009; Huang, Ramaswamy, Huang, et al., 2007; Huang, 
Ramaswamy, & Soden, 2007; Palchetti et al., 2020; Pan et al., 2015; Wielicki et al., 2002). Even when there is 
continuous spatiotemporal coverage of OLR spectra, the compensating effects of greenhouse gas opacity and 
temperature warming make it difficult to detect climate change in satellite measurements (Huang, 2013; Huang 
& Ramaswamy, 2009).

Downwelling longwave radiation emitted by the atmosphere is one key component in the surface energy budget 
(Stephens et al., 2012; Trenberth et al., 2009). Compared to the radiation budget at the TOA, the surface radiation 
budget is more uncertain and longwave radiation is a main contributor to the uncertainty (Trenberth et al., 2009; 
Wild et al., 2012). This is largely due to the paucity of global and long-term downwelling longwave radiance 
(DLR) observations. Despite the limits of spectrally resolved DLR records, it has been demonstrated that DLR 
measurements are useful for understanding the surface energy balance and testing climate models. For example, 
Lubin (1994) explained the super greenhouse effect by using observed DLR spectra over equatorial oceans; Feld-
man et al. (2015) used the DLR spectra to measure CO2 radiative forcing at the Southern Great Plains (SGP) and 
the North Slope Alaska sites; Huang et al. (2019), Kapsch et al. (2016), Shupe and Intrieri (2004), Sokolowsky 
et al. (2020) and several others diagnosed the DLR variability in relation to sea ice, clouds and other climate 
changes in polar regions.

Climate change is driven by changes in energy balance. This leads us to an overarching question regarding the 
surface energy balance: can climate change be detected and understood by monitoring the DLR spectrum? One 
advantage of the DLR, compared to the OLR, is that the compensating effects mentioned earlier vanish. In the 
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DLR, the greenhouse gas opacity and temperature warming effects reinforce 
each other to increase DLR. This makes DLR a potentially advantageous 
observation for monitoring climate change (Huang, 2013). The signals from 
different meteorological variables such as temperature, greenhouse gases, 
and clouds imprint different spectral signatures. This allows for a spectral 
fingerprinting of their changes (Huang et al., 2010). At the SGP site, the fifth 
generation European Centre for Medium-Range Weather Forecasts atmos-
pheric reanalysis dataset, ERA5 (Hersbach et  al.,  2020), shows that there 
has been a significant warming in surface air temperature with a magnitude 
of ∼0.045 K/year between 1996 and 2018 (Figure 1). Can this warming be 
detected from the DLR spectral records at that site?

We have two primary objectives in this paper. First, we are interested in 
constructing a long-term monthly DLR spectral record based on 23  years 
of measurements by the Atmospheric Emitted Radiance Interferometers 
(AERIs) installed at the U.S. Department of Energy Atmospheric Radiation 
Measurement (ARM) SGP site. Two AERIs have been deployed at this site 
and have rendered 10 years of overlapping observations but with different 
sampling strategies (i.e., 3 min sky average every 8 min vs. multiple 20-s 
sky average observations every 4 min). We will examine the accuracy and 
consistency of the measurements and assess them against synthetic spectra 
simulated from collocated atmospheric measurements using a benchmark 
radiation model. Second, we will analyze the combined long-term DLR spec-
tral trends for the period of 1996–2018. We are interested in ascertaining 
if the radiance trends in the AERI bands dominated by near-surface emis-
sion are consistent with the warming temperature trend shown by ERA5 
(Figure 1). This work will also test the veracity of the trends documented by 
Gero and Turner (2011) using the early years of the DLR record and analyze 
the contributions from different sky conditions.

2. Data and Methods
2.1. AERI Data Processing

The AERI is a ground-based Fourier transform spectrometer that measures 
the DLR emitted from the atmosphere with an accuracy of 1% ambient radi-
ance at high temporal and spectral resolution (Knuteson et al., 2004a, 2004b). 
The measurements cover the spectral range between 520 and 3,020  cm −1 
with a resolution of 0.5 cm −1; however, we focus on the mid-infrared spectral 
range from 520 to 1800 cm −1 in this paper. Two high-emissivity blackbodies, 
a hot blackbody with a fixed temperature at 60°C and another blackbody at 
ambient temperature (Knuteson et al., 2004a), are used for radiometric cali-
bration based on the method of Revercomb et al. (1988). The long-term aver-
age of all 23 annual mean DLR spectra and the standard deviation of monthly 
mean DLR spectra over the 23 years for different sky conditions at the SGP 
site are shown in Figure 2. We classify the scene into three different condi-
tions: clear-sky, thin-cloud, and thick-cloud; the classification method will be 
explained in Section 2.2. The main difference in DLR between different sky 
conditions is primarily in the window portion of the spectrum (between 800 
and 1200 cm −1) shown in Figure 2a. The standard deviation of thick-cloud 
DLR is found to be the smallest among all the different sky conditions in the 
window band (Figure 2b), which indicates small variability of the radiating 
temperature of the thick clouds.

Figure 1. Warming trend at Southern Great Plains (SGP). Shown here is the 
ERA5 monthly mean 2 m air temperature time series at the SGP site (average 
of nine 0.25° × 0.25° resolution grid boxes centered at: 97.5°W and 36.5°N) 
between 1996 and 2018. The anomaly is defined with respect to multi-year 
monthly mean of each calendar month.

Figure 2. (a) Long-term average of all 23 annual mean AERI spectra 
for different sky conditions at Southern Great Plains (SGP). (b) Standard 
deviation of monthly mean AERI spectra for different sky conditions at SGP. 
(RU: Radiance Units; 1 RU = 1 mW/[m 2 sr cm −1]) The insets in the two panels 
indicate the corresponding zoomed-in results in the CO2 absorption band.



Journal of Geophysical Research: Atmospheres

LIU ET AL.

10.1029/2021JD035949

3 of 21

The two AERIs deployed at SGP have different observational periods and different sampling frequencies. AERI-
01 operated from July 1995 to March 2014, while AERI-C1 has operated from February 2004 to the present. C1 
is the designator of the Central Facility location of the SGP site. Historically E14 was an alternate designator for 
the same location. AERI-C1 was named AERI-E14 before 2011, for example, in Gero and Turner (2011). The two 
AERIs were deployed side-by-side (within 5 m of each other). Given their vertical field of view (FOV) of 2.6° 
full-angle, both instruments view the same portion of the sky; 86% of the FOVs of the two AERIs are overlapped 
at the altitude of 1 km. The overlapping observations make it possible to test the accuracy and consistency of the 
measurements. However, the two instruments differ with respect to their sampling frequency. AERI-01 measures 
one DLR spectrum approximately every 8 min; its measurement cycle includes a 200-s sky-dwell period (Knute-
son et al., 2004b) and the rest of the cycle is used for viewing the blackbodies for calibration. AERI-C1 uses a 
rapid mode with ∼20-s sampling cycle (Turner et al., 2006). Such differences in the measurements necessitate 
appropriate procedures to homogenize the data from the two AERIs for inter-comparisons and trend analyses.

Figure 3 shows the flowchart illustrating the data processing adopted in this paper. First, rigorous quality control 
is performed on the data to retain reliable observations. During the long history of observations at the SGP site, 
many factors have caused errors including: contamination of the scene mirror, malfunction of the interferometer, 
and failure of the detector temperature sensor. We first discard all the erroneous data based on the AERI quality 
control reports from the ARM program (https://adc.arm.gov/discovery/#/results/instrument_class_code::aeri). In 
addition, similar to the quality control method described in Turner and Gero (2011), the hatch status and the sky 
view noise equivalent radiance tests are also implemented.

Figure 3. Data processing flowchart. Yellow and purple squares represent AERI-01 and AERI-C1 DLR data respectively. 
Blue squares represent important data processing steps. Pink squares represent radiative transfer model simulations. Details of 
processing steps are provided in the text.

https://adc.arm.gov/discovery/#/results/instrument_class_code::aeri
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After the Quality Control step, we average the AERI-C1 spectra over 8 min intervals, to be consistent with the 
AERI-01 sampling period. Then, in the Sky Classification step, we apply a machine learning algorithm (detailed 
in Section 2.2 below) to classify the sky conditions as one of clear, thin cloud, or thick cloud overhead based on 
the 8 min mean radiance spectra. Next, we compute averages of all 8 min spectra of each sky type within each 
hour and then average the hourly spectra of the same hour of the day to obtain a monthly averaged diurnal cycle. 
It is verified that there is uniform diurnal sampling in each month; no data of the 24-hr diurnal cycle is missing. 
Next, the monthly mean spectra are obtained by averaging the monthly averaged diurnal cycle. Monthly means 
are discarded when the count of hourly spectra is below 400 (∼55%).

Some channels in the center of the CO2 absorption band (∼667  cm −1) and the water vapor absorption band 
(1300–1800 cm −1) for which the near-surface atmosphere is so opaque that the channels are essentially uncal-
ibrated are discarded in the Optical Depth Screening step. These strongly opaque channels are identified using 
the criterion that the gaseous optical depth for a 1 m layer of atmosphere at the surface is above 0.5. Finally, the 
monthly anomaly spectra are obtained by subtracting from each monthly mean spectra the long-term average 
of all 23 monthly mean spectra for that calendar month (which effectively removes the seasonal cycle). These 
monthly anomaly time series are illustrated in Figure 4, and are used in the following analyses and figures. The 
long-term trends in the DLR monthly mean spectra are analyzed based on the monthly anomaly spectra. Synthetic 
clear-sky DLR, computed using collocated radiosonde data and a radiative transfer model (described below), 

Figure 4. Monthly anomalies of AERI-observed downwelling longwave radiance spectra and hourly spectra count in each 
month.
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are used as a baseline to evaluate the measurements of the two AERIs during the overlapping period; details are 
provided in Appendix A.

Both AERIs produced more than 600 hourly mean spectra per month nearly 90% of the time (Figure 4c). The 
strongest monthly DLR anomalies are seen in the window band (800–1200 cm −1; Figures 4a and 4b). The pattern 
of the DLR anomalies in the overlapping observational period is similar in both AERI-01 and AERI-C1.

2.2. Sky Classification

Clouds strongly influence the DLR spectra, especially in the atmospheric window (800–1200 cm −1). In order to 
identify the causes of the DLR trends, we separate the clear-sky spectra from the cloudy cases and examine their 
trends separately.

A sky-classification model is developed using a machine-learning method based upon the k-nearest neighbor 
(k-NN) algorithm (Cunningham & Delany,  2020). The 8  min AERI-01 and AERI-C1 spectra for the period 
between 1 March 2011 and 31 July 2012 are used to train the k-NN model. We use the same inputs and truth data 
from Raman Lidar as in Turner and Gero (2011). The k-NN classification achieves an accuracy of 94.8%. This 
algorithm determines the sky to be clear or cloudy, while the cloudy sky is then further classified to be thin-cloud 
when 70 min averaged 985 cm −1 brightness temperature is lower than 250 K; otherwise, it is classified to be 
thick-cloud. We also tried a classical backpropagation gradient-descent classification algorithm as used by Turner 
and Gero (2011), which achieves an accuracy of 90%. The resulting trends are not sensitive to the classification 
method chosen. The results presented below are based on the k-NN algorithm.

Based on the classification of thin-cloud and thick-cloud, the thick-cloud emitting temperature range is smaller 
than that for thin-cloud, primarily because thick-clouds are opaque clouds relatively close to the surface while 
thin-cloud may be either partially cloudy scenes or clouds higher in the troposphere. This is why the thick-cloud 
classification has the smallest standard deviation of DLR among the three different sky conditions.

2.3. Homogenization

During the overlapping observational period, discrepancies larger than the documented AERI absolute calibra-
tion uncertainty (Knuteson et al., 2004a) were observed between the monthly mean spectra observed by AERI-01 
and AERI-C1. Large radiance discrepancies occur, especially in the window band, and are found to mainly come 
from clear-sky scenes (see Figure B1 and discussions in Appendix B). This suggests that the discrepancies likely 
result from calibration (Rowe, Neshyba, Cox, & Walden, 2011; Rowe, Neshyba, & Walden, 2011) and other 
undetected errors (e.g., something in the FOV of one instrument but not the other). In order to avoid discarding 
meaningful data in the trend analysis, we simulate the clear-sky DLR spectra using a radiation model together 
with collocated atmospheric measurements and use these synthetic spectra as a reference to assign proper weights 
in combining the data of AERI-01 and AERI-C1, based on the findings of previous radiance closure studies (e.g., 
Turner et al., 2004) that demonstrated high accuracy in such synthetic spectra.

The radiation model used here is the Line-by-Line Radiative Transfer Model (LBLRTM v12.9; Clough 
et al., 2005). To compute the clear-sky DLR spectra at SGP, we use the temperature and water vapor profiles 
from the ARM Balloon-Borne Sounding System (https://www.arm.gov/capabilities/instruments/sonde). The 
water vapor mixing ratio profiles derived from radiosondes are scaled with a height-independent factor to match 
the precipitable water vapor (PWV) retrieved by the microwave radiometer at the SGP site. This approach has 
been used to compensate for the dry-bias issue found in the radiosonde water vapor data (Holdridge, 2020; Rever-
comb et al., 2003; Turner et al., 2003; Wang et al., 2002). CO2 and CH4 concentration profiles are obtained from 
the CarbonTracker website (http://carbontracker.noaa.gov, Jacobson et al., 2020; Peters et al., 2007). O3 concen-
tration profiles are adjusted from NASA's Modern-Era Retrospective analysis for Research and Applications, 
Version 2 (MERRA-2, Gelaro et al., 2017) ozone product to get a better radiative closure with AERI-observed 
DLR (see more details in Appendix B). We use a 200-level input profile for the LBLRTM simulations. The 
first and second levels are at 0 and 10 m above ground level respectively. The depth of each subsequent layer is 
increased by 2% relative to the one below.

https://www.arm.gov/capabilities/instruments/sonde
http://carbontracker.noaa.gov
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As radiosonde observations of near-surface layers are essential to the DLR spectra, the AERI data are selected to 
match the radiosonde launch time. We keep the spectra whose observation time is within 10 min of the radiosonde 
launch time. For each month, about 70 clear-sky DLR spectra are simulated on average. The absolute values of 
the radiance biases (𝐴𝐴 𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ) are determined as the monthly mean radiance differences between the synthetic and 
observed DLR spectra.

During the overlapping observational period, the monthly mean AERI-01 and AERI-C1 DLR spectra are 
combined according to Equation 1 and Equation 2 using the ratio 𝐴𝐴 𝐴𝐴 , which represents the proximity of the AERI's 
observed DLR spectra to the synthetic DLR spectra. 𝐴𝐴 𝐴𝐴 is a function of wavenumber. The 5th, 50th and 95th 
percentiles of the ratio 𝑟𝑟 across all AERI channels over the 23-year period are 0.55, 2.06, and 12.84 respectively. 
The weighted radiance used in the trend analysis is given by Equation 2, where 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−01 and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝐶𝐶1 represent 
the observed AERI-01 and AERI-C1 monthly mean DLR respectively.

𝑟𝑟 =
𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴−01−𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿)

𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴−𝐶𝐶1−𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅𝐿𝐿𝐿𝐿)

 (1)

𝑅𝑅 = 𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴−01 ×
1

1 + 𝑟𝑟
+𝑅𝑅𝐴𝐴𝐴𝐴𝑅𝑅𝐴𝐴−𝐶𝐶1 ×

𝑟𝑟

1 + 𝑟𝑟
 (2)

2.4. Trend Detection

A weighted linear regression method is applied to determine if there are any trends in the observed DLR. We 
develop our weighted linear regression model based on the regression model developed by Tiao et al. (1990) and 
Weatherhead et al. (1998).

This model determines the radiance trend, 𝐴𝐴 𝐴𝐴𝐴 in each AERI channel, as:

�̂�𝜔 =

∑𝑇𝑇

𝑡𝑡=1
𝑊𝑊𝑡𝑡

(

𝑡𝑡 − 𝑡𝑡
)

𝑦𝑦𝑡𝑡
⋆

1 − 𝜙𝜙

12

∑𝑇𝑇

𝑡𝑡=1
𝑊𝑊𝑡𝑡

(

𝑡𝑡 − 𝑡𝑡
)2

 (3)

In Equation 3, 𝐴𝐴 𝐴𝐴  represents the total number of months and 𝐴𝐴 𝑡𝑡 represents the mean value of �. 𝐴𝐴 𝐴𝐴 is the autocorre-
lation in the noise of the time series considering a first-order autoregressive (AR1) process, and 𝐴𝐴 𝐴𝐴𝑡𝑡

⋆ represents 
the transformed radiance anomalies (see Figure A1) after removing the effect of the AR1 process (see details 
in Appendix A). 𝐴𝐴 𝐴𝐴𝑡𝑡 represents the weights which are determined as the intra-month variability of the all-sky 
observed DLR, shown in Equation 4:

𝑊𝑊𝑡𝑡 =
𝑁𝑁𝑡𝑡

𝜎𝜎𝑡𝑡
2

 (4)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 and 𝐴𝐴 𝐴𝐴𝑡𝑡
2 represent the number and variance of hourly observations in each month. Large variability of 

DLR results in smaller weights. We use the same weights for all sky conditions.

Along with the magnitude of the trend it is also important to determine the associated uncertainty, 𝐴𝐴 𝐴𝐴�̂�𝜔 , which is 
shown in Equation 5. In Equation 5, 𝐴𝐴 𝐴𝐴𝑁𝑁

2 and 𝐴𝐴 𝐴𝐴𝑒𝑒
2 represent the variance of the error due to internal variability in 

the time series and the variance of the measurement error respectively. Here, we mainly account for two sources 
of uncertainty. First, there is the uncertainty arising from internal climate variability. This is accounted for by 
the term in Equation 5 associated with 𝐴𝐴 𝐴𝐴𝑁𝑁 and 𝐴𝐴 𝐴𝐴 . Second, there is the uncertainty arising from instrumentation 
errors accounted for by the term in Equation 5 associated with 𝐴𝐴 𝐴𝐴𝑒𝑒 . We use the radiance difference between clear-
sky LBLRTM simulation and clear-sky AERI-observation as the measurement error. We assume that these two 
sources of uncertainty are independent of each other. The derivation of Equation 5 is given in Appendix A.

𝜎𝜎�̂�𝜔 =

12

√

∑𝑇𝑇

𝑡𝑡=1
𝑊𝑊𝑡𝑡

2
(

𝑡𝑡 − 𝑡𝑡
)2

∑𝑇𝑇

𝑡𝑡=1
𝑊𝑊𝑡𝑡

(

𝑡𝑡 − 𝑡𝑡
)2

√

𝜎𝜎𝑁𝑁
2
1 + 𝜙𝜙

1 − 𝜙𝜙
+ 𝜎𝜎𝑒𝑒

2 (5)
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The derived 𝐴𝐴 𝐴𝐴�̂�𝜔 in Equation 5 is referred to as the standard error of the trend magnitude. It is used to test whether 
the trends deviate significantly from 0 at the 95% significance level. A trend is considered to be significant at the 
95% significance level if the trend magnitude is larger than 𝐴𝐴 2𝜎𝜎�̂�𝜔 . In following figures, the uncertainty envelope 
plotted in gray corresponds to the 95% confidence interval.

3. Results
3.1. All-Sky Radiance Trends

The homogenized DLR records have been constructed, based on monthly averaged AERI-01 data from 1996 to 
2013 and AERI-C1 data from 2004 to 2018. In total, we have 23 years of DLR data at SGP for analysis.

It can be inferred from the monthly anomalies shown in Figure 4 that the DLR trends depend on the analysis 
period as the anomalies do not show monotonic changes over this 23-year period. The AERI-01 data (Figure 4a) 
show more frequent negative anomalies after 2011 in the window band (800–1200 cm −1), which is consistent 
with the negative trends reported in Gero and Turner (2011) for this instrument. However, including AERI-C1 
data (Figure 4b) affords a longer DLR spectral record, and the latest several years are characterized by warm 
anomalies.

The long-term all-sky radiance trends during the 1996–2018 period are shown in Figure 5. The all-sky DLR 
trends have different features in different spectral regions. In the CO2 absorption band centered around 667 cm −1, 
the trends are generally positive (i.e., radiance is increasing over time) and are statistically significant in the band 
wings but not at the center. In the window band (800–1200 cm −1), there are very few statistically significant 
trends. In the water vapor absorption band (1300–1800 cm −1), similar to the CO2 absorption band, the radiance 
trends are generally positive and statistically significant.

DLR in different AERI channels are controlled by different meteorological variables. To illustrate this point, 
Figure 6a shows the correlation coefficients between the deseasonalized and detrended monthly anomalies in the 
radiance (brightness temperature) spectra from the two AERIs and surface air temperature from ERA5. Note that 
AERI-01 and AERI-C1 have different observational periods, which result in different correlation coefficients 
especially in the window band. In the center of the CO2 absorption band (667 cm −1) and channels correspond-
ing to strong H2O absorption lines, the correlation coefficient is close to one, indicating that the variance in the 
radiance in these channels is primarily controlled by the surface air temperature. This is because the atmospheric 

Figure 5. The all-sky radiance trends. The spectral elements indicated with red dots have trends that exceed the 95% 
significant test. The shading in the figure is the 95% confidence interval. The inset shows the zoomed-in results of CO2 
absorption band.
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absorption is strongly saturated in these channels and thus they are less sensitive to variations in the concen-
trations of the gases themselves and to temperatures of the atmospheric constituents farther removed from the 
surface. In comparison, in the wings of the CO2 band and the weaker H2O absorption lines, the atmospheric 
absorption is not saturated so that variability in DLR is subject to the variation in the temperature and gas concen-
tration throughout the vertical column. This means that the trends both in temperature and gas concentrations 
drive the radiance to increase, which explains the stronger and statistically more significant trend signals in these 
channels, as seen in Figure 5.

In Figure 6, the time series of the brightness temperature in four selected AERI channels: a CO2 channel at 
655.72 cm −1, a window channel at 887.63 cm −1, a O3 channel at 1023.60 cm −1, and a H2O channel at 1447.89 cm −1 
(Figures 6b–6e) are displayed. There is good consistency between the AERI-01 and AERI-C1 observed bright-
ness temperature in all four channels. The all-sky brightness temperature at the CO2 channel follows closely with 
the surface air temperature from ERA5 (Figure 6b). The near-surface warming of 0.045 K/year (Figure 1) is 
equivalent to 0.071 RU/year at this channel, which is close to the observed all-sky radiance trend of ∼0.072 RU/
year (averaged trend between 5 nearby channels). In the H2O channel, the brightness temperature measured by the 
AERIs also follows the near surface air temperature (Figure 6e) but not as closely as the CO2 channel (Figure 6b). 
In contrast, the brightness temperature anomalies in the window and O3 channels have larger fluctuations than 
that in the CO2 and H2O channels and are evidently decoupled from the near surface air temperature (Figures 6c 
and 6d).

That the radiance trend is reinforced by both warming and opacity effects in the weak absorption channels indi-
cates the benefits of using these AERI measurements in climate change detection. Assuming the trend magnitude 
and uncertainty determined from this 23-year record remain unchanged into future, the years to detect a signifi-
cant trend, 𝐴𝐴 𝐴𝐴

⋆ , at 90% significance level is:

𝑛𝑛
⋆ ≈

3.3𝜎𝜎�̂�𝜔

|�̂�𝜔|
× 23 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (6)

Figure 6. (a) The correlation coefficient between the AERI-observed brightness temperature spectra and near-surface air 
temperature from ERA5 at the SGP site over the 23-year period. (b–e) The time series of the deseasonalized brightness 
temperature and near surface air temperature in four AERI channels. In each title, the values in the parentheses are the 
correlation coefficients between near-surface air temperature from ERA5 and observed brightness temperature by AERI-01 
and AERI-C1, respectively.



Journal of Geophysical Research: Atmospheres

LIU ET AL.

10.1029/2021JD035949

9 of 21

where 𝐴𝐴 𝐴𝐴𝐴 is the 23-year trend determined by Equation 3 and 𝐴𝐴 𝐴𝐴�̂�𝜔 is the trend 
uncertainty determined by Equation 5. The derivation of Equation 6 is given 
in Appendix  A.4. Although the trends are considered significant when 

𝐴𝐴 |�̂�𝜔| > 2𝜎𝜎�̂�𝜔 , we require 𝐴𝐴 |�̂�𝜔| > 3.3𝜎𝜎�̂�𝜔 when computing 𝐴𝐴 𝐴𝐴
⋆ . As discussed in 

Appendix C, this yields a more conservative estimation of 𝐴𝐴 𝐴𝐴
⋆ compared to 

the method of Leroy et al. (2008).

Based on this equation, approximately 30 years are needed to detect a signif-
icant trend in the 2 m air temperature from the ERA5 data shown in Figure 1 
when 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴�̂�𝜔 are substituted with the 2 m air temperature trend magnitude 
and trend uncertainty, respectively. In comparison, Figure  7 shows earlier 
detectability of the radiance trends in weak absorption channels, such as in 
the wings of the CO2 band and in the weak absorption channels in the H2O 
vibration-rotational band. In Figure 7c, the earlier detectability of the radi-
ance trends in the H2O vibration-rotational band is noticeable in the wings of 
strong absorption lines (i.e., where the optical depth is relatively lower). We 
can conclude that it is advantageous to monitor the DLR in these weaker-ab-
sorption channels for climate change detection.

Trend detection in the radiance record is determined by comparing the trend 
signal to the uncertainties arising from different causes. Here, based on Equa-
tion 5, we account for uncertainties arising from climate internal variability 
(𝐴𝐴 𝐴𝐴𝑁𝑁 ) and also instrumentation error (𝐴𝐴 𝐴𝐴𝑒𝑒 ; Figure 5). The overall uncertainty is 
notably large in the window band for the all-sky condition (Figure 5), which 
impedes the detection of any significant radiance trends in this especially 
variable spectral region. Analysis of the respective parameters in Appen-
dix A (see Figure A2) indicates that internal climate variability dominates 

instrumentation error when shaping the overall uncertainty envelope in Figure 5. It is also found that the influence 
of the autoregressive process does not strongly influence the trend uncertainty, as evident by the small value of 

𝐴𝐴 𝐴𝐴 , especially in the window band (Figure A2). We conclude that the trend uncertainty mainly arises from internal 
climate variability.

3.2. Trends in Different Cloud Conditions

The results presented in the previous subsection demonstrate that the radiance trends in the window band are 
different from the greenhouse gas absorption bands; the window band is also prone to high levels of uncertainty 
due to the marked variability of the signal that ranges from small values in clear sky conditions to large values 
when opaque low-altitude clouds are overhead. Given the fact that clouds are a significant factor that influences 
this band (see Figure 2), we analyze the radiance trends under different cloud conditions in this subsection.

The fraction of time that each sky condition occurs in 1  month (referred to as “sky fraction”) based on the 
hourly spectra are shown in Figure 8. First, there is a good agreement between AERI-01 and AERI-C1 in the 
sky fraction monthly time series, with correlation coefficients of 0.94, 0.89, and 0.94 for clear-sky, thin-cloud, 
and thick-cloud, respectively. The clear-sky fraction between June 1996 and May 2010 from our classification is 
around 42% which is comparable to what was found by Turner and Gero (2011).

The clear-sky fraction increases at a rate of 0.17 ± 0.09% per year, while the thick-cloud fraction decreases at a 
rate of −0.18 ± 0.09% per year. There is no significant trend for thin-cloud fraction. Understanding the atmos-
pheric mechanisms that drive the trends in the sky fraction for different sky conditions are the subject of investi-
gation in a future work.

Trends in AERI-observed DLR for different sky conditions based on the k-NN classifier are shown in Figure 9. 
In the window band, the clear-sky and thin-cloud trends are positive, while the thick-cloud trends are negative; 
however, none of those trends are statistically significant from zero because of the notably large trend uncertainty. 
The positive trend in the window band in the clear-sky data is likely due to increases in PWV, as hypothesized 
by Gero and Turner (2011). The positive trend in the thin-cloud classification suggests that either the clouds in 

Figure 7. Trend detectability. (a) Time to detect (T2D) radiance trends at 90% 
significance level in different AERI channels; in comparison, the T2D for the 
2 m temperature from the ERA5 reanalysis is about 30 years. (b) Zoomed-in 
figure of panel (a) in the water vapor absorption band. (c) The T2D (color-
coded), in relation to atmospheric absorption strength, measured by the optical 
depth of a 1 m-thick atmospheric layer near the surface. The horizontal line 
marks optical depth of 0.5.
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these scenes are becoming more opaque, the clouds are becoming warmer (perhaps by moving lower in the trop-
osphere), the PWV is increasing, or some combination of the three. The decrease in the thick-cloud trend in the 
window suggests that these thicker clouds are either becoming cooler or moving higher in the troposphere. In the 
spectral regions outside the window band, the trends for different sky conditions are generally positive and have 
the same features as the all-sky scenes.

The all-sky DLR trends are caused by changes in both sky fraction and the 
radiance of each sky condition. We use Equation 7 to separate the contribu-
tions from these factors, in which 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 represents the all-sky radiance, 𝐴𝐴 𝐴𝐴𝑖𝑖 and 

𝐴𝐴 𝐴𝐴𝑖𝑖 represent the sky fraction and mean radiance for different sky conditions.

𝑑𝑑𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑
=

∑ 𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖 +

∑ 𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
𝑑𝑑𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎𝑎𝑎 (7)

The results of the decomposed trends based on Equation  7 are shown in 
Figure 10. The small residual term (purple line in Figure 10a), which comes 
from nonlinear effects, suggests that the overall all-sky radiance trends can be 
well explained by Equation 7. In the window band, the overall radiance trends 
are a result of the compensation between the sky fraction change (orange line 
in Figure 10a) and the radiance change (yellow line in Figure 10a). In the 
opaque portions of the CO2 absorption band (centered at 667 cm −1) and H2O 
absorption band (1300–1800 cm −1), the overall radiance trends are caused by 
radiance change which is due almost entirely to the increases in the near-sur-
face temperature because the atmosphere is already too opaque to reflect any 
gas concentration changes.

The overall radiance trends caused by sky fraction changes (orange line in 
Figure 10a) are a result of the compensation between changes in the clear-
sky (blue line in Figure  10b) and the thick-cloud fraction (yellow line 
in Figure  10b) except in the opaque regions of the CO2 absorption band 
(centered at 667 cm −1) and H2O absorption band (1300–1800 cm −1). In the 
CO2 absorption band and H2O absorption band, the perfect compensation 
between positive trends caused by clear-sky and thin-cloud sky fraction 
changes and the negative trends caused by thick-cloud sky fraction changes 

Figure 8. The monthly sky fractions of different sky conditions, categorized based on 8 min mean spectra at the Southern 
Great Plains site. The overlapping observational period is between the two vertical thick black lines.

Figure 9. The trends in AERI-observed downwelling longwave radiance 
for different sky conditions at the Southern Great Plains site. The spectral 
elements marked with red dots indicate that the trends pass the 95% 
significance test. The shading in the figure is the 95% confidence interval.
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results in almost no trends. In the window band, the negative trends are mainly caused by the thick-cloud fraction 
change.

In the window band (800–1200 cm −1), the overall radiance trends caused by radiance change (yellow line in 
Figure 10a) result from the compensation between positive clear-sky and thin-cloud radiance change trends and 
negative thick-cloud radiance change trends (Figure 10c). By contrast, in the CO2 absorption band (centered at 
667 cm −1) and H2O absorption band (1300–1800 cm −1), the radiance changes for the three sky conditions all 
contribute similarly to the overall radiance trends caused by radiance change.

4. Discussion and Conclusions
In this study, a long-term record of DLR at the SGP site has been constructed for analyzing the DLR trends, based 
on a weighted linear regression method that takes into account both natural climate variability and measurement 
error. Compared to previous studies, our analysis is based on a longer DLR record combined from the two AERIs 
at the SGP site, and makes use of synthetic DLR data in validating and differentiating the AERI measurements 
over their overlapping observational period. In addition, we quantitatively decompose the overall radiance trends 
due to the contributions from sky fraction change and the radiance change in each of these sky conditions.

The trends in DLR in different spectral ranges have different features. The trends are generally positive in the CO2 
and H2O absorption bands, while no statistically significant trends are detected in the window band (Figure 5). 
We find that in the more opaque regions (the center of the CO2 and H2O absorption bands), the radiance is 
controlled by the near-surface air temperature (Figure  6) because of the strong atmospheric absorption. The 
sensitivity of DLR to near-surface air temperature indicates the potential of DLR to monitor climate change. In 
the wings of these absorption bands, both the near-surface atmospheric warming and the increase of the abun-
dance of these trace gases contribute to the radiance trends (Feldman et al., 2015), which makes a climate trend 
signal more readily detectable, as hypothesized by Huang (2013). In the window band, the radiance is decoupled 
from the near-surface air temperature (Figure 6) because of the impact of sky-fraction changes of different scenes 
(clear and cloudy-skies).

Figure 10. The all-sky downwelling longwave radiance (DLR) trends decomposed into the contributions from the sky 
fraction and radiance changes of different sky conditions. (a) The blue line represents the calculated all-sky DLR trends, 
which is the same as that from Figure 5. The orange and yellow lines represent the contributions from sky fraction change 
and radiance change determined using Equation 7, respectively. The purple line is the residual term from Equation 7; (b) 
The all-sky DLR trends caused by sky fraction change. The blue, orange, and yellow lines represent the contributions from 
clear-sky, thin-cloud, and thick-cloud fraction changes respectively; (c) The all-sky DLR trends caused by radiance change. 
The blue, orange, and yellow lines represent the contributions from clear-sky, thin-cloud, and thick-cloud radiance changes 
respectively.
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We find that the sky-fraction change and the radiance change led to compensating effects on the DLR trends. 
This compensation results in weakly (statistically insignificant) negative radiance trends in the window band 
(Figure 10). In contrast, the radiance trends are dominated by the radiance change in the CO2 and H2O absorption 
bands, which are similar in all three sky conditions.

The influences of both natural climate variability and measurement error are considered when determining the 
uncertainty of the trend magnitude (Equation 5, Figure A2). We find that for all sky conditions, the majority of 
the uncertainty comes from the natural variability. This underlines the necessity of continuous DLR measure-
ments to ascertain the DLR trends, especially in the window band (Figure 5).

The two AERIs at the SGP site provide us with an excellent opportunity to test the accuracy and consistency of 
the instruments. The discrepancies between the two AERIs in the overlapping periods may have come from cali-
bration error and other undetected instrumentation errors. In this study, we use synthetic data to differentiate and 
combine the two AERIs' observations. Further investigation is required to understand the origin of the discrepan-
cies and therefore to assure the measurement accuracy.

This paper has focused on the detection, as opposed to attribution, of the DLR trends. In the clear-sky case, 
atmospheric temperature and radiative gas concentration changes (primarily water vapor) are likely the main 
contributors to the DLR changes. As for the cloudy-sky case, changes in both the atmospheric states and cloud 
properties may contribute to the DLR changes. Future work is warranted to understand and quantitatively attrib-
ute the DLR trends disclosed in this paper to different meteorological variables.

Appendix A: Trend Detection
We first summarize the linear trend model and trend estimation from Tiao et  al.  (1990) and Weatherhead 
et al. (1998) in A.1 and A.2. We adopt the notation in their papers. Then we add the measurement error term to 
the trend detection in A.3 following Tiao et al. (1990).

A.1. Basic Linear Trend Modeling

In order to detect a linear trend, we first construct a simple model that describes the monthly mean radiance 𝐴𝐴 𝐴𝐴𝑡𝑡 as:

𝑌𝑌𝑡𝑡 = 𝜇𝜇 + 𝑆𝑆𝑡𝑡 + 𝜔𝜔𝜔𝜔𝑡𝑡 +𝑁𝑁𝑡𝑡, 𝑡𝑡 = 1,⋯ , 𝑇𝑇 (A1)

where 𝐴𝐴 𝐴𝐴 is a constant term, 𝐴𝐴 𝐴𝐴𝑡𝑡 represents the seasonal component, 𝐴𝐴 𝐴𝐴 is the trend magnitude to be determined, 
𝐴𝐴 𝐴𝐴𝑡𝑡 =

𝑡𝑡

12
 represents time measured in the units of year, 𝐴𝐴 𝐴𝐴𝑡𝑡 represents the unexplained portion of the data (i.e., the 

noise), and 𝐴𝐴 𝐴𝐴  represents the length of the data set in months.

The seasonal component 𝐴𝐴 𝐴𝐴𝑡𝑡 is determined by computing a long-term average of each calendar month. This 
component is subsequently removed from the monthly mean.

𝑦𝑦𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑆𝑆𝑡𝑡 = 𝜇𝜇 + 𝜔𝜔𝜔𝜔𝑡𝑡 +𝑁𝑁𝑡𝑡, 𝑡𝑡 = 1,⋯ , 𝑇𝑇 (A2)

The noise 𝐴𝐴 𝐴𝐴𝑡𝑡 is assumed to be autoregressive of the order of 1 (AR1):

𝑁𝑁𝑡𝑡 = 𝜙𝜙𝑁𝑁𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (A3)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 is assumed to be random white noise with zero mean and common variance 𝐴𝐴 𝐴𝐴𝜖𝜖
2 , 𝐴𝐴 𝐴𝐴𝑡𝑡 ∼ 𝑊𝑊

(

0, 𝜎𝜎𝐴𝐴
2
)

 . The 
autocorrelations in the noise come from various natural factors. 𝐴𝐴 𝐴𝐴 is determined as the autocorrelation coefficient 
of the AR1 process after removing from 𝐴𝐴 𝐴𝐴𝑡𝑡 a linear trend component obtained by regressing 𝐴𝐴 𝐴𝐴𝑡𝑡 to time using a 
simple weighted linear least squares method (i.e., neglecting the AR1). The all-sky 𝐴𝐴 𝐴𝐴 is shown in Figure A2a.

The variance of the noise 𝐴𝐴 𝐴𝐴𝑡𝑡 can also be determined from the detrended 𝐴𝐴 𝐴𝐴𝑡𝑡 time series:



Journal of Geophysical Research: Atmospheres

LIU ET AL.

10.1029/2021JD035949

13 of 21

��
2 =��� (��,��) = ��� (���−1 + ��, ���−1 + ��)

=�2��� (��−1, ��−1) + ��� (��, ��)

=�2��
2 + ��

2

 (A4)

Thus,

𝜎𝜎𝑁𝑁
2 =

𝜎𝜎𝜖𝜖
2

1 − 𝜙𝜙2
 (A5)

A.2. Trend Estimation With Weights

Given 𝐴𝐴 𝐴𝐴 , to obtain the trend estimation, we consider a transformed model:

��⋆ = �� − ���−1
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[

� − �(� − 1)
12

]

+ ��

= �(1 − �) +
��
12

+
�(1 − �)�

12
+ ��

= �⋆ + ��⋆ + ��

 (A6)

where 𝐴𝐴 𝐴𝐴
⋆ = 𝐴𝐴(1 − 𝜙𝜙) +

𝜔𝜔𝜙𝜙

12
 and 𝐴𝐴 𝐴𝐴

⋆ =
(1−𝜙𝜙)𝐴𝐴

12
 . Thus, in the transformed model, the noise term 𝐴𝐴 𝐴𝐴𝑡𝑡 has been removed.

The transformed DLR 𝐴𝐴 𝐴𝐴𝑡𝑡
⋆ is shown in Figure A1.

According to the weighted least squares estimation:
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where 𝐴𝐴 𝐴𝐴𝑡𝑡 represents the weights determined according to Equation  4, ��⋆ =
∑�

�=1 ����⋆
∑�

�=1 ��
 , �⋆ =

∑�
�=1 ���⋆
∑�

�=1 ��
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In Equation A9, 𝐴𝐴 𝐴𝐴 is a function of 𝐴𝐴 𝐴𝐴  , 𝐴𝐴 𝐴𝐴 , and 𝑊𝑊  with the explicit expression shown in Equation A10.
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Figure A1. Transformed monthly anomaly of AERI-observed DLR spectra based on Equation A6 and hourly spectra count 
in each month.
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From Equation A11, we conclude that the trend uncertainty is affected by the length of the available data, the 
natural variability in the data, the autocorrelation of the data, and the derived weights.

A.3. Effect of Measurement Error

When we consider the instrumentation errors 𝐴𝐴 𝐴𝐴𝑡𝑡 in the measurements, Equation A2 becomes:

𝑦𝑦𝑡𝑡 = 𝜇𝜇 + 𝜔𝜔𝜔𝜔𝑡𝑡 +𝑁𝑁𝑡𝑡 + 𝑒𝑒𝑡𝑡, 𝑡𝑡 = 1,⋯ , 𝑇𝑇 (A12)

𝐴𝐴 𝐴𝐴𝑡𝑡 is considered to be white noise with zero mean and common variance 𝐴𝐴 𝐴𝐴𝑒𝑒
2 , 𝐴𝐴 𝐴𝐴𝑡𝑡 ∼ 𝑊𝑊

(

0, 𝜎𝜎𝐴𝐴
2
)

 , and is considered 
independent of 𝐴𝐴 𝐴𝐴𝑡𝑡 because 𝐴𝐴 𝐴𝐴𝑡𝑡 originates from unobserved or unsuspected atmospheric factors, while 𝐴𝐴 𝐴𝐴𝑡𝑡 comes 
from the instrument itself.

In this case, the variance of noise comes from two parts:

𝜎𝜎
2
= 𝜎𝜎𝑁𝑁

2
+ 𝜎𝜎𝑒𝑒

2 (A13)

Similar to the derivation in Equation A9, the variance of the estimated trend magnitude is:
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 (A14)

The uncertainty of the all-sky radiance trend magnitude caused by the natural variability and the measurement 
error are shown in Figure A2b.

Figure A2. Parameters concerning the radiance trends. (a) The all-sky autocorrelation coefficient based on an AR1 process; 
(b) All-sky DLR trend uncertainty decomposition based on Equation A14. The blue line represents the total all-sky trend 
magnitude uncertainty, while the orange and yellow lines represent the all-sky trend magnitude uncertainty arising from 
natural climate variability and measurement error respectively.
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A.4. Time to Detect the Trend

The trend detection 𝐴𝐴 𝐴𝐴 is judged to be real or significantly different from zero at the 95% level if 𝐴𝐴 |�̂�𝜔| > 2𝜎𝜎�̂�𝜔 . 𝐴𝐴 𝐴𝐴𝐴 is 
approximately normally distributed, so 𝐴𝐴 𝐴𝐴 =

�̂�𝜔−𝜔𝜔

𝜎𝜎�̂�𝜔

 follows a standard normal distribution.

𝑃𝑃𝑃𝑃 (|�̂�𝜔| > 2𝜎𝜎�̂�𝜔) = 𝑃𝑃𝑃𝑃

(

𝑧𝑧 > 2 −
𝜔𝜔

𝜎𝜎�̂�𝜔

)

 (A15)

To detect a real trend of specified magnitude 𝐴𝐴 |𝜔𝜔| , with probability of 90%, requires that 𝐴𝐴 2 −
𝜔𝜔

𝜎𝜎�̂�𝜔

< −1.3⇒𝜔𝜔 𝜔 3.3𝜎𝜎�̂�𝜔 .

Thus, the number of years 𝐴𝐴 𝐴𝐴
⋆ of data required to detect the trend 𝐴𝐴 𝐴𝐴𝐴 which is determined based on 23-year data, 

assuming that the trend and noise levels do not change relative to the 23-year period, is

𝑛𝑛
⋆ ≈

3.3𝜎𝜎�̂�𝜔

|�̂�𝜔|
× 23 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (A16)

We note that the T2D estimation is different from ascertaining whether the trend magnitude measured from data 
is significantly different from zero. Hence, although in some channels the trend magnitude is assessed to be 
“significant”, the estimated T2D may be longer than the record length (23 years). This is because when estimating 
T2D we recognize that the measured time series is one of the many possible realizations that, although governed 
by the same physical processes and thus of the same true trend, may not render the same trend magnitude in the 
data. This explains why the factor (3.3) used in the T2D estimation is different from that (2.0) used in the trend 
significance test.

Appendix B: Homogenization of the Two AERI Records
B.1. Comparison Between the Two AERIs

During the overlapping observation period, the all-sky monthly mean radiance difference between AERI-01 and 
AERI-C1 is shown in Figure B1. Since these two instruments have different sampling frequency, the AERI-C1 
spectra are averaged to match the sampling of AERI-01 spectra before the comparison. From Figure B1a, there 

Figure B1. (a) The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-C1–AERI-01). The green 
symbols indicate AERI-C1 instrument transitions; (b) Number of 8 min spectra for each month (the counts are identical after 
AERI-C1 spectra are resampled to match AERI-01).
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are noticeable discrepancies between the AERI-01 and AERI-C1 observations. Because of the different sampling 
frequency, the two AERIs have random errors of different amplitudes (Turner et al., 2006). However, we find 
that removing the random errors using the principal component analysis following Turner et al. (2006) has little 
impact on the discrepancies (not shown). We find that in more than 20% of the AERI channels in the spectral 
range from 700 to 1300 cm −1 and for more than 12% of the overlapping observational months, the radiance differ-
ence between two AERIs is larger than the documented absolute calibration uncertainty (Knuteson et al., 2004a).

For the AERI-C1 data stream, multiple instruments were used. All these transitions can be seen in Figure B1a as 
either subtle changes or obvious differences. First, the transition from AERI-04 to AERI-05 happened in Septem-
ber 2009, which caused subtle changes and is labeled by the green star in Figure B1a. These AERIs were among 
the several AERIs constructed by the University of Wisconsin–Madison for the ARM program. Next, in March 
2010, the instrument changed from AERI-05 to AERI-06, which is labeled by the green triangle in Figure B1a. 
Then, the transition from AERI-06 to AERI-106 happened in March 2011, which caused more noticeable changes 
and is labeled by the green square in Figure B1a. At this point, the AERI technology was licensed to a commercial 
vendor, and their units are now characterized by a three-digit number. So AERI-106 is the 6th unit constructed 
by the vendor. AERI-106 operated until July 2013, when it was replaced with the AERI-108 which has operated 
at the SGP site since then. We find that the radiance differences between all of these “AERI-C1” instruments and 
the AERI-01 have unique spectral signatures.

When separating the measured spectra by different sky conditions, we find that the prominent difference between 
the two AERIs in the window band mainly comes from relatively clear sky conditions. Figure B2 shows the 
monthly mean radiance difference for different sky conditions in October 2006 as an example. Here the DLR at 
985 cm −1 is used to classify the sky to be relatively clear or optically thin clouds (<40 RU) or relatively cloudy 
(>40 RU). We chose 40 RU based on the threshold that Turner and Gero (2011) used to classify cloudy sky to be 
thin or thick clouds scenes.

We examined various instrumental parameters recorded with AERI measurements, including calibration black-
body temperatures and instrument responsivity, but found that no instrumental parameter explains the radiance 
difference between the two AERIs. It is possible that an unknown obstruction was partially in the FOV of one of 
the AERIs (e.g., unit AERI-106), such as what was experienced with an early AERI at the SGP site (Knuteson 
et al., 1999).

B.2. Clear-Sky LBLRTM Simulations

Since the differences between two AERIs mainly come from relatively clear sky scenes, we use clear sky synthetic 
spectra simulated by the LBLRTM as a metric to distinguish their relative accuracies. Here we use the classical 
backpropagation gradient-descent classification algorithm mentioned in Subsection 2.2 to select clear-sky spec-
tra. To ensure the case is clear, we set the algorithm threshold to be 0.8, which means the probability of the sky 
being clear is at least 0.8.

Figure B2. The monthly mean DLR difference between AERI-C1 and AERI-01 (AERI-C1–AERI-01) for different sky 
conditions in October 2006. See text for details.
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After matching all datasets, including radiosondes and gas concentrations at SGP mentioned in Section 2.3 to 
select atmospheric profiles, clear sky synthetic spectra are obtained during the overlapping observational period. 
For each month, about 70 DLR spectra are simulated on average. The LBLRTM simulation is validated based on 
the test in Feldman et al. (2015). We chose the same time slices selected in Feldman et al. (2015) to simulate the 
DLR spectrum and we can achieve similar radiative closures between observation and simulation.

We originally used the ozone concentration profile from the Modern-Era Retrospective analysis for Research and 
Applications Version 2 (MERRA-2, Gelaro et al., 2017) in simulating the synthetic spectra. A relatively poorer 
radiance closure between AERI-observations and LBLRTM simulations was found in the ozone absorption band 
near 1040 cm −1(not shown). By comparing the in-situ measurements at SGP (available only at limited times), we 
find that this is due to poor representation of the near-surface (and hence lower tropospheric) ozone concentration in 
the MERRA-2 dataset. To address this issue, we vertically scale the ozone profile uniformly to achieve an improved 
radiance closure in the ozone band as exemplified by Figure B3 (AERI-C1 line); however, this change to the ozone 
absorption region between 1040 and 1140 cm −1 has little impact on the all-sky radiance trend detected in Figure 5.

As demonstrated in Figure B3, we find that the AERI-C1 is generally in better agreement with LBLRTM simu-
lations than AERI-01, especially in the window band. The radiance difference in each channel is used to weight 
the spectra of AERI-01 and AERI-C1, according to Equation 2, allowing us to develop an integrated record of 
monthly mean DLR spectra from the two instruments.

Figure B4 shows the comparison between LBLRTM simulated clear-sky DLR trends (blue dots) and AERI-ob-
served clear-sky DLR trends (red dots) over the 23-year period. The clear-sky DLR trends using simulated clear-
sky DLR values are similar to the clear-sky DLR trends using AERI-observations indicating the reliability of the 
simulated DLR long-term record.

Figure B3. The clear-sky monthly mean DLR difference between AERI-observations and LBLRTM simulations in October 2006.

Figure B4. Comparison between LBLRTM simulated clear-sky DLR trends (blue dots) and AERI-observed clear-sky DLR 
trends (red dots) over the 23-year period. The inset shows the zoomed-in comparison in the CO2 absorption band.
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Appendix C: Comparison of the Estimations of Time to Detect Radiance Trends
Leroy et al. (2008) proposed a formula (hereinafter referred to as the Leroy method) to calculate the minimum 
time to detect (T2D) a trend. T2D calculated using Equation 6 (hereinafter referred to as the Liu method) is longer 
than using the Leroy method.

Figure C1 shows the time to detect (T2D) radiance trends at 90% significance level in different AERI channels 
using the Liu method and the Leroy method respectively. The signal-to-noise ratio 𝐴𝐴 𝐴𝐴 in Equation 11 of Leroy 
et al. (2008) is set to be 3.3 in order to be consistent with our derivation in Appendix A.4; the terms 𝐴𝐴 𝐴𝐴𝑣𝑣𝑣𝑣𝑣𝑣 and 𝐴𝐴 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
in this equation correspond to 𝐴𝐴 𝐴𝐴𝑁𝑁 and 𝐴𝐴 𝐴𝐴𝑒𝑒 in Equation 5 respectively.

The correlation coefficient between T2Ds obtained from the two methods is 0.93. T2D calculated using the Liu 
method is generally longer than that calculated using the Leroy method by 10 years when T2D is 40 years, and 
by 45 years when T2D is 100 years.

Data Availability Statement
The original AERI data can be obtained from the ARM data repository (http://www.arm.gov). Our processed 
monthly mean AERI spectra are available from Mendeley Data (https://data.mendeley.com/datasets/hdwf-
m3zpd8/2). CarbonTracker CT2019 B results are provided by NOAA GML, Boulder, Colorado, USA from the 
website at http://carbontracker.noaa.gov. CarbonTracker-CH4 results are provided by NOAA ESRL, Boulder, 
Colorado, USA from the website at http://www.esrl.noaa.gov/gmd/ccgg/carbontracker-ch4/.
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